skip to main content


Search for: All records

Creators/Authors contains: "Daniels, Z. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manual examination of chest x-rays is a time consuming process that involves significant effort by expert radiologists. Recent work attempts to alleviate this problem by developing learning-based automated chest x-ray analysis systems that map images to multi-label diagnoses using deep neural net- works. These methods are often treated as black boxes, or they output attention maps but don’t explain why the attended areas are important. Given data consisting of a frontal-view x-ray, a set of natural language findings, and one or more diagnostic impressions, we propose a deep neural network model that during training simultaneously 1) constructs a topic model which clusters key terms from the findings into meaningful groups, 2) predicts the presence of each topic for a given input image based on learned visual features, and 3) uses an image’s predicted topic encoding as features to predict one or more diagnoses. Since the net learns the topic model jointly with the classifier, it gives us a powerful tool for understanding which semantic concepts the net might be ex- ploiting when making diagnoses, and since we constrain the net to predict topics based on expert-annotated reports, the net automatically encodes some higher-level expert knowledge about how to make diagnoses. 
    more » « less
  2. The ability for computational agents to reason about the high-level content of real world scene images is important for many applications. Existing attempts at complex scene understanding lack representational power, efficiency, and the ability to create robust meta- knowledge about scenes. We introduce scenarios as a new way of representing scenes. The scenario is an interpretable, low-dimensional, data-driven representation consisting of sets of frequently co-occurring objects that is useful for a wide range of scene under- standing tasks. Scenarios are learned from data using a novel matrix factorization method which is integrated into a new neural network architecture, the Scenari-oNet. Using ScenarioNet, we can recover semantic in- formation about real world scene images at three levels of granularity: 1) scene categories, 2) scenarios, and 3) objects. Training a single ScenarioNet model enables us to perform scene classification, scenario recognition, multi-object recognition, content-based scene image retrieval, and content-based image comparison. ScenarioNet is efficient because it requires significantly fewer parameters than other CNNs while achieving similar performance on benchmark tasks, and it is interpretable because it produces evidence in an understandable format for every decision it makes. We validate the utility of scenarios and ScenarioNet on a diverse set of scene understanding tasks on several benchmark datasets. 
    more » « less